Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thiol-metabolizing proteins and endothelial redox state: differential modulation of eNOS and biopterin pathways.

Identifieur interne : 000978 ( Main/Exploration ); précédent : 000977; suivant : 000979

Thiol-metabolizing proteins and endothelial redox state: differential modulation of eNOS and biopterin pathways.

Auteurs : Toru Sugiyama [États-Unis] ; Thomas Michel

Source :

RBID : pubmed:19897710

Descripteurs français

English descriptors

Abstract

The intracellular redox state is stringently maintained by thiol-based antioxidants to establish a balance for the physiological and pathophysiological roles of reactive oxygen species. The relative contributions of the thioredoxin (Trx) and glutathione/glutaredoxin systems to intracellular redox balance are incompletely understood, as are the consequences of altered thiol metabolism on endothelial nitric oxide (NO) synthase (eNOS) and NO-dependent pathways in the endothelium. We designed duplex small interfering RNA (siRNA) constructs to specifically "knock down" the expression of three key thiol-metabolizing enzymes in cultured aortic endothelial cells. Transfection of siRNA constructs targeting glutathione reductase (GR), cytosolic Trx reductase (TrxR1), or mitochondrial Trx reductase (TrxR2) significantly decreased the intracellular reduced glutathione-to-oxidized glutathione ratio. siRNA-mediated knockdown of either GR, TrxR1, or TrxR2 markedly suppressed VEGF-induced NO production (measured by an electrochemical NO sensor) and also blocked eNOS enzyme activity (using the [(3)H]arginine/[(3)H]citrulline assay). Pretreatment of endothelial cells with N,N'-bis(2-chloroethyl)-N-nitrosourea, an inhibitor of GR and TrxR, significantly decreased VEGF-induced NO production. siRNA-mediated TrxR2 knockdown led to a marked increase in hydrogen peroxide (H(2)O(2)) production in endothelial cells. In contrast, knockdown of GR or TrxR1 only slightly increased H(2)O(2) production. Supplementation of endothelial cells with tetrahydrobiopterin prevented the increase in H(2)O(2) generation seen with siRNA-mediated knockdown of GR. These studies show that the differential regulation of thiol-metabolizing proteins leads to critical changes in oxidative and nitrosative stress pathways. Greater understanding of the differential regulation of thiol-metabolizing proteins may lead to the development of new pharmacological targets for diseases associated with oxidative stress in the vascular wall.

DOI: 10.1152/ajpheart.00767.2009
PubMed: 19897710
PubMed Central: PMC2806140


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thiol-metabolizing proteins and endothelial redox state: differential modulation of eNOS and biopterin pathways.</title>
<author>
<name sortKey="Sugiyama, Toru" sort="Sugiyama, Toru" uniqKey="Sugiyama T" first="Toru" last="Sugiyama">Toru Sugiyama</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Michel, Thomas" sort="Michel, Thomas" uniqKey="Michel T" first="Thomas" last="Michel">Thomas Michel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19897710</idno>
<idno type="pmid">19897710</idno>
<idno type="doi">10.1152/ajpheart.00767.2009</idno>
<idno type="pmc">PMC2806140</idno>
<idno type="wicri:Area/Main/Corpus">000A64</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A64</idno>
<idno type="wicri:Area/Main/Curation">000A64</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A64</idno>
<idno type="wicri:Area/Main/Exploration">000A64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thiol-metabolizing proteins and endothelial redox state: differential modulation of eNOS and biopterin pathways.</title>
<author>
<name sortKey="Sugiyama, Toru" sort="Sugiyama, Toru" uniqKey="Sugiyama T" first="Toru" last="Sugiyama">Toru Sugiyama</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Michel, Thomas" sort="Michel, Thomas" uniqKey="Michel T" first="Thomas" last="Michel">Thomas Michel</name>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Heart and circulatory physiology</title>
<idno type="eISSN">1522-1539</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biopterin (analogs & derivatives)</term>
<term>Biopterin (metabolism)</term>
<term>Cattle (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Disulfides (metabolism)</term>
<term>Electrochemistry (MeSH)</term>
<term>Endothelium, Vascular (metabolism)</term>
<term>Enzyme Inhibitors (pharmacology)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Reductase (antagonists & inhibitors)</term>
<term>Glutathione Reductase (genetics)</term>
<term>Glutathione Reductase (metabolism)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Nitric Oxide Synthase Type III (antagonists & inhibitors)</term>
<term>Nitric Oxide Synthase Type III (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Proteins (metabolism)</term>
<term>RNA, Small Interfering (pharmacology)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
<term>Thioredoxin Reductase 1 (antagonists & inhibitors)</term>
<term>Thioredoxin Reductase 1 (genetics)</term>
<term>Thioredoxin Reductase 1 (metabolism)</term>
<term>Thioredoxin Reductase 2 (antagonists & inhibitors)</term>
<term>Thioredoxin Reductase 2 (genetics)</term>
<term>Thioredoxin Reductase 2 (metabolism)</term>
<term>Transfection (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Antienzymes (pharmacologie)</term>
<term>Bioptérine (analogues et dérivés)</term>
<term>Bioptérine (métabolisme)</term>
<term>Bovins (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Disulfures (métabolisme)</term>
<term>Endothélium vasculaire (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione reductase (antagonistes et inhibiteurs)</term>
<term>Glutathione reductase (génétique)</term>
<term>Glutathione reductase (métabolisme)</term>
<term>Nitric oxide synthase type III (antagonistes et inhibiteurs)</term>
<term>Nitric oxide synthase type III (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Petit ARN interférent (pharmacologie)</term>
<term>Protéines (métabolisme)</term>
<term>Thiols (métabolisme)</term>
<term>Thioredoxin reductase 1 (antagonistes et inhibiteurs)</term>
<term>Thioredoxin reductase 1 (génétique)</term>
<term>Thioredoxin reductase 1 (métabolisme)</term>
<term>Thioredoxin reductase 2 (antagonistes et inhibiteurs)</term>
<term>Thioredoxin reductase 2 (génétique)</term>
<term>Thioredoxin reductase 2 (métabolisme)</term>
<term>Transfection (MeSH)</term>
<term>Électrochimie (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Biopterin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Glutathione Reductase</term>
<term>Nitric Oxide Synthase Type III</term>
<term>Thioredoxin Reductase 1</term>
<term>Thioredoxin Reductase 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutathione Reductase</term>
<term>Thioredoxin Reductase 1</term>
<term>Thioredoxin Reductase 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Biopterin</term>
<term>Disulfides</term>
<term>Glutathione</term>
<term>Glutathione Reductase</term>
<term>Hydrogen Peroxide</term>
<term>Nitric Oxide Synthase Type III</term>
<term>Proteins</term>
<term>Sulfhydryl Compounds</term>
<term>Thioredoxin Reductase 1</term>
<term>Thioredoxin Reductase 2</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Bioptérine</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Glutathione reductase</term>
<term>Nitric oxide synthase type III</term>
<term>Thioredoxin reductase 1</term>
<term>Thioredoxin reductase 2</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutathione reductase</term>
<term>Thioredoxin reductase 1</term>
<term>Thioredoxin reductase 2</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endothelium, Vascular</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bioptérine</term>
<term>Disulfures</term>
<term>Endothélium vasculaire</term>
<term>Glutathion</term>
<term>Glutathione reductase</term>
<term>Nitric oxide synthase type III</term>
<term>Peroxyde d'hydrogène</term>
<term>Protéines</term>
<term>Thiols</term>
<term>Thioredoxin reductase 1</term>
<term>Thioredoxin reductase 2</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antienzymes</term>
<term>Petit ARN interférent</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Enzyme Inhibitors</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cattle</term>
<term>Cells, Cultured</term>
<term>Electrochemistry</term>
<term>Oxidation-Reduction</term>
<term>Transfection</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Bovins</term>
<term>Cellules cultivées</term>
<term>Oxydoréduction</term>
<term>Transfection</term>
<term>Électrochimie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The intracellular redox state is stringently maintained by thiol-based antioxidants to establish a balance for the physiological and pathophysiological roles of reactive oxygen species. The relative contributions of the thioredoxin (Trx) and glutathione/glutaredoxin systems to intracellular redox balance are incompletely understood, as are the consequences of altered thiol metabolism on endothelial nitric oxide (NO) synthase (eNOS) and NO-dependent pathways in the endothelium. We designed duplex small interfering RNA (siRNA) constructs to specifically "knock down" the expression of three key thiol-metabolizing enzymes in cultured aortic endothelial cells. Transfection of siRNA constructs targeting glutathione reductase (GR), cytosolic Trx reductase (TrxR1), or mitochondrial Trx reductase (TrxR2) significantly decreased the intracellular reduced glutathione-to-oxidized glutathione ratio. siRNA-mediated knockdown of either GR, TrxR1, or TrxR2 markedly suppressed VEGF-induced NO production (measured by an electrochemical NO sensor) and also blocked eNOS enzyme activity (using the [(3)H]arginine/[(3)H]citrulline assay). Pretreatment of endothelial cells with N,N'-bis(2-chloroethyl)-N-nitrosourea, an inhibitor of GR and TrxR, significantly decreased VEGF-induced NO production. siRNA-mediated TrxR2 knockdown led to a marked increase in hydrogen peroxide (H(2)O(2)) production in endothelial cells. In contrast, knockdown of GR or TrxR1 only slightly increased H(2)O(2) production. Supplementation of endothelial cells with tetrahydrobiopterin prevented the increase in H(2)O(2) generation seen with siRNA-mediated knockdown of GR. These studies show that the differential regulation of thiol-metabolizing proteins leads to critical changes in oxidative and nitrosative stress pathways. Greater understanding of the differential regulation of thiol-metabolizing proteins may lead to the development of new pharmacological targets for diseases associated with oxidative stress in the vascular wall.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19897710</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>01</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1539</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>298</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Heart and circulatory physiology</Title>
<ISOAbbreviation>Am J Physiol Heart Circ Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Thiol-metabolizing proteins and endothelial redox state: differential modulation of eNOS and biopterin pathways.</ArticleTitle>
<Pagination>
<MedlinePgn>H194-201</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/ajpheart.00767.2009</ELocationID>
<Abstract>
<AbstractText>The intracellular redox state is stringently maintained by thiol-based antioxidants to establish a balance for the physiological and pathophysiological roles of reactive oxygen species. The relative contributions of the thioredoxin (Trx) and glutathione/glutaredoxin systems to intracellular redox balance are incompletely understood, as are the consequences of altered thiol metabolism on endothelial nitric oxide (NO) synthase (eNOS) and NO-dependent pathways in the endothelium. We designed duplex small interfering RNA (siRNA) constructs to specifically "knock down" the expression of three key thiol-metabolizing enzymes in cultured aortic endothelial cells. Transfection of siRNA constructs targeting glutathione reductase (GR), cytosolic Trx reductase (TrxR1), or mitochondrial Trx reductase (TrxR2) significantly decreased the intracellular reduced glutathione-to-oxidized glutathione ratio. siRNA-mediated knockdown of either GR, TrxR1, or TrxR2 markedly suppressed VEGF-induced NO production (measured by an electrochemical NO sensor) and also blocked eNOS enzyme activity (using the [(3)H]arginine/[(3)H]citrulline assay). Pretreatment of endothelial cells with N,N'-bis(2-chloroethyl)-N-nitrosourea, an inhibitor of GR and TrxR, significantly decreased VEGF-induced NO production. siRNA-mediated TrxR2 knockdown led to a marked increase in hydrogen peroxide (H(2)O(2)) production in endothelial cells. In contrast, knockdown of GR or TrxR1 only slightly increased H(2)O(2) production. Supplementation of endothelial cells with tetrahydrobiopterin prevented the increase in H(2)O(2) generation seen with siRNA-mediated knockdown of GR. These studies show that the differential regulation of thiol-metabolizing proteins leads to critical changes in oxidative and nitrosative stress pathways. Greater understanding of the differential regulation of thiol-metabolizing proteins may lead to the development of new pharmacological targets for diseases associated with oxidative stress in the vascular wall.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sugiyama</LastName>
<ForeName>Toru</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Michel</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL046457</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM36259</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL46457</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL48743</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>11</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Heart Circ Physiol</MedlineTA>
<NlmUniqueID>100901228</NlmUniqueID>
<ISSNLinking>0363-6135</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>22150-76-1</RegistryNumber>
<NameOfSubstance UI="D001708">Biopterin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.13.39</RegistryNumber>
<NameOfSubstance UI="D052250">Nitric Oxide Synthase Type III</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.7</RegistryNumber>
<NameOfSubstance UI="D005980">Glutathione Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D054481">Thioredoxin Reductase 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D054482">Thioredoxin Reductase 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EGX657432I</RegistryNumber>
<NameOfSubstance UI="C003402">sapropterin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001708" MajorTopicYN="N">Biopterin</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004563" MajorTopicYN="N">Electrochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004730" MajorTopicYN="N">Endothelium, Vascular</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005980" MajorTopicYN="N">Glutathione Reductase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052250" MajorTopicYN="N">Nitric Oxide Synthase Type III</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054481" MajorTopicYN="N">Thioredoxin Reductase 1</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054482" MajorTopicYN="N">Thioredoxin Reductase 2</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>1</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19897710</ArticleId>
<ArticleId IdType="pii">00767.2009</ArticleId>
<ArticleId IdType="doi">10.1152/ajpheart.00767.2009</ArticleId>
<ArticleId IdType="pmc">PMC2806140</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Circ Res. 2003 Nov 28;93(11):1029-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Aug 15;406(1):105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17501721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1980 Feb;102(1):176-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7356152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1980 Jul 15;106(1):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7416462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1997 Aug 18;237(2):340-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9268712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9220-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9689061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2005 Jul;25(7):1332-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15790928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2006 Apr 4;113(13):1708-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16585403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H985-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16632549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2007 Jun;27(6):1283-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 9;282(45):32719-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2008 Apr;294(4):H1530-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18192221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2008;13:5323-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Oct;10(10):1713-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 8;284(19):12691-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19286667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17343-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2000 Nov 10;87(10):840-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2000 Winter;2(4):811-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11213485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2001 Apr 27;88(8):756-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11325866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9745-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2006 Nov;26(11):2439-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Immunol Immunopathol. 2007 Jan 15;115(1-2):107-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17067684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2004 Jun 15;109(23 Suppl 1):III27-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15198963</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Michel, Thomas" sort="Michel, Thomas" uniqKey="Michel T" first="Thomas" last="Michel">Thomas Michel</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Sugiyama, Toru" sort="Sugiyama, Toru" uniqKey="Sugiyama T" first="Toru" last="Sugiyama">Toru Sugiyama</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000978 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000978 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19897710
   |texte=   Thiol-metabolizing proteins and endothelial redox state: differential modulation of eNOS and biopterin pathways.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19897710" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020